
Owlifier: Creating OWL-DL Ontologies from Simple
Spreadsheet-Based Knowledge DescriptionsI

Shawn Bowersa,∗, Joshua S. Madinb, Mark P. Schildhauerc

aUC Davis Genome Center
bDept. of Biological Sciences, Macquarie University, Australia

cNational Center for Ecological Analysis and Synthesis, UC Santa Barbara

Abstract

Discovery and integration of data is important in many ecological studies, espe-
cially those that concern broad-scale ecological questions. Data discovery and
integration is often a difficult and time-consuming task for researchers, which is
due in part to the use of informal, ambiguous, and sometimes inconsistent terms
for describing data content. Ontologies offer a solution to this problem by pro-
viding consistent definitions of ecological concepts that in turn can be used to
annotate, relate, and search for data sets. However, unlike in molecular biology
or biomedicine, few ontology development efforts exist within ecology. Ontology
development often requires considerable expertise in ontology languages and de-
velopment tools, which is often a barrier for ontology creation in ecology. In this
paper we describe an approach for ontology creation that allows ecologists to
use common spreadsheet tools to describe different aspects of an ontology. We
present conventions for creating, relating, and constraining concepts through
spreadsheets, and provide software tools for converting these ontologies into
equivalent OWL-DL representations. We also consider inverse translations, i.e.,
to convert ontologies represented using OWL-DL into our spreadsheet format.
Our approach allows large lists of terms to be easily related and organized into
concept hierarchies, and generally provides a more intuitive and natural inter-
face for ontology development by ecologists.

1. Introduction

Within the fields of molecular biology and biomedicine considerable effort
has gone into developing ontologies for improving data discovery and integration
[2, 3]. While similar benefits can be obtained for ecological data, far fewer efforts
exist to develop broad and consistent terminologies within ecology [13, 16].
The use of formal ontologies can significantly enhance metadata descriptions of
ecological data. For instance, annotating data with ontology terms can both help
users interpret data as well as enable advanced capabilities for data discovery

∗Corresponding author

Preprint submitted to Elsevier December 3, 2008



and integration, e.g., by exploiting subsumption and part-of hierarchies as well
as more formal constraints such as cardinality restrictions on properties and
term equivalence [13].

Efforts to engage scientists in the development of ontologies typically lever-
age the W3C Web Ontology Language (OWL) [21] as a standard XML syntax
for representing and sharing ontologies. A key advantage of OWL is that it is
supported by a wide range of generic tools, including editors [11, 10], reasoning
systems [20, 23], query languages [17, 15], and storage technologies [7, 6]. Most
of these tools, however, are primarily targeted at experts in knowledge engi-
neering and software development familiar with the underlying description logic
semantics of OWL-DL [8]. This is especially true with ontology editors (such as
Protege, SWOOP, etc.), which allow for very detailed ontology specifications,
but at the same time require considerable understanding of the underlying on-
tology formalisms and syntax. We see the lack of suitable ontology editing tools
for scientists without expertise in knowledge representation as one of the major
barriers for more wide-scale adoption of ontologies in ecology.

This paper presents a novel approach for ontology creation that aims at
being more intuitive for ecologists and that can be used to rapidly construct
large ontologies for describing scientific data. Our approach is to allow scientists
to use common spreadsheet-based tools to describe, in an intuitive way, different
aspects of an ontology, and then to take these descriptions and convert them
into full-fledged OWL ontologies using a software application called owlifier. An
owlifier spreadsheet consists of a set of blocks that have a predefined template
structure for users to fill in. Each non-empty row in an owlifier table constitutes
a block. Each block defines different aspects of an ontology including ontology
classes, subclasses, synonyms, and properties. We also provide blocks for plain-
text descriptions of classes and properties, and for referencing one or more
existing ontologies (e.g., to extend an existing ontology or to define ontology
articulations). Blocks can be sparse (inheriting from previous blocks), which
can further simplify the creation of large ontologies.

While not as expressive as OWL-DL, our approach can produce ontology
structures that are essential for improved data discovery and integration [14].
Just as important, because spreadsheet tools are frequently used by ecologists
to store and analyze data, owlifier can provide ecologists with a familiar and
accessible user interface for ontology creation. This approach also leverages
the ability of spreadsheet tools to organize and manipulate tabular data, e.g.,
allowing users to rapidly construct class hierarchies from long lists of keywords.
In this way, an ecologist can easily construct (or import) a set of terms, and then
incrementally organize these into class hierarchies, properties, and constraints.
In initial experiments with ecologists and evolutionary biologists studying trait
data, we found that owlifier enabled them to quickly and easily comprehend and
construct relatively complex and meaningful ontologies.

The rest of this paper is organized as follows. In Section 2 we describe
the basic syntax and semantics of owlifier. We define blocks that support a
large subset of OWL-DL and that also generally follow the ontology creation
guidelines defined in [19]. We also simplify certain aspects of ontology creation

2



using OWL-DL, e.g., by assuming classes are disjoint by default (unless specified
otherwise) [19]. In Section 3 we describe additional characteristics of owlifier and
discuss issues with respect to classification and reasoning. In Section 4 we briefly
describe the owlifier implementation, and conclude in Section 5 with related and
future work. In general, the goal of owlifier is not to support all constructs in
OWL-DL, but instead to provide a higher-level ontology syntax (via spreadsheet
blocks) that is easy for ecologists to use and understand while also providing the
necessary constructs for developing typical ecological ontologies. By compiling
owlifier to OWL-DL, we also allow for experts to refine and extend the ontology
using more advanced ontology editing tools if necessary (cf. Figure 1).

2. The Syntax and Semantics of Owlifier

As described above, an owlifier table defines an OWL-DL [21] ontology
through a set of blocks representing one or more ontology definitions. Each
non-empty row in an owlifier table corresponds to a block. The type of the
block is given in the first column of the row. We assume that if any proper-
ties or classes used in a block are not imported from another ontology, then
they are to be added to the ontology being specified by the owlifier table (i.e.,
the “current” ontology). In general, we name blocks according to the terms
used in [5, 14] as opposed to the names used for corresponding constructs in
OWL-DL. This choice of block names helps to simplify terminology (e.g., we use
“relation” below instead of “object property”), allows owlifier to easily generate
ontologies that extend the observational model of [5, 14], and avoids confusion
with established terms commonly used within ecology (e.g., “class”).

Import Blocks. Import blocks assign namespace labels to external ontologies.
Each external ontology is imported into the current ontology. We refer to the
ontologies of import blocks as imported ontologies. Using import blocks, classes
and properties of imported ontologies can be used within other blocks of an
owlifier table. Rows containing import blocks take the form

import n u

where n is a namespace label and u is an OWL ontology URI. Classes and
properties from imported ontologies are referenced by prefixing the namespace
label n to the corresponding class or property name in the normal way. As an
example, the following block imports the SWEET “Earth Realm” ontology [18]

import sweet http://sweet.jpl.nasa.gov/ontology/earthrealm.owl

With this import block the class denoting Marine Ecosystems (a class defined in
the SWEET ontology) can be referred to from within an owlifier table using the
expression sweet:MarineEcosystem. Because this class refers to a class in another
ontology, we refer to it as an imported class.

Entity Blocks. Entity blocks are the primary blocks used to define ontologies.
An entity block introduces new OWL classes and specifies subclass relationships.

3



Imported classes may also be used within entity blocks by prefixing class names
with namespace labels (as described above). Rows containing entity blocks take
the form

entity c1 c2 . . . cn (n ≥ 1)

where each class ci is asserted in the current ontology to subsume ci+1, for
1 ≤ i < n. That is, each ci in an entity block induces the description logic
axiom ci+1 v ci. If both ci and ci+1 are imported classes, we say that the block
defines an “articulation” (i.e., mapping) between the two classes. The following
entity block defines a simple subclass hierarchy.

entity PhysicalFeature AquaticPhysicalFeature River

This block states that Physical Feature, Aquatic Physical Feature, and River are
classes; River is a subclass of Aquatic Physical Feature; and Aquatic Physical
Feature is a subclass of Physical Feature. The following entity block introduces
a new class via an imported class.

entity sweet:MarineEcosystem IntertidalEcosystem

This block states that Intertidal Ecosystem is a subclass of the Marine Ecosys-
tem class imported from the SWEET ontology. Similarly, assuming “marine”
denotes an existing ontology of marine ecosystem concepts, the following block
defines a simple class articulation.

entity sweet:MarineEcosystem marine:DeepSeaEcosystem

This block states that the Deep Sea Ecosystem class of the marine ontology is a
subclass of the Marine Ecosystem class of the SWEET ontology (thus defining
a mapping between these two ontologies).

Synonym Blocks. Synonym blocks define equivalence relationships between
ontology classes. Rows containing synonym blocks take the form

synonym c1 c2 . . . cn (n ≥ 2)

where each class ci is equivalent to class ci+1 in the current ontology, for 1 ≤
i < n. That is, each ci in a synonym block induces a description logic axiom of
the form ci ≡ ci+1. The following synonym block creates a simple equivalence
relationship.

synonym Maize Corn

This block states that the Maize and Corn classes are synonyms (equivalent
classes). Similar to entity blocks, synonym blocks often contain imported classes
for extending existing ontologies or defining ontology mappings.

Overlap Blocks. Except in certain situations (described further in Section 3),
classes are generally assumed to be disjoint in owlifier. Overlap blocks explicitly
relax this assumption by stating that a given set of classes may have overlapping
instances. Rows containing overlap blocks take the form

4



overlap c1 c2 . . . cn (n ≥ 2)

where each class ci is allowed to share instances with each class cj , for 1 ≤
i, j ≤ n. That is, a given ci and cj in an overlap block are not defined to be
disjoint classes in the current ontology. As an example, consider the following
entity blocks that define the classes Estuary, Lagoon, and Marsh as subclasses
of Ecological Habitats.

entity EcologicalHabitat Estuary
entity EcologicalHabitat Lagoon
entity EcologicalHabitat Marsh

Given only these blocks, owlifier treats Estuary, Lagoon, and Marsh as disjoint
classes. To relax this assumption and allow, e.g., types of Lagoons to also be
types of Estuaries, we explicitly add the following overlap block

overlap Estuary Lagoon

In general, overlap blocks are rarely used but provide a mechanism to override
the default behavior of owlifier in asserting disjoint classes.

Relationship Blocks. Relationship blocks define required class object prop-
erties. An object property within OWL is a property defined between two class
instances. Rows containing relationship blocks take the form

relationship p c1 c2 . . . cn (n ≥ 2)

where p is an object property and each c is a class. For every class ci, the
relationship block induces the description logic axiom ci v ∃p.ci+1 stating that
each instance of ci is p-related to some instance of ci+1, for 1 ≤ i < n. For
example, the following block states that instances of the class California Voles
live in Grassy Areas.

relationship livesIn CaliforniaVole GrassyArea

In some cases, a particular property can apply to a sequence of classes, and for
convenience, each such class can be specified in owlifier using a single block. For
example, consider the following block.

relationship directlyBelow Hypolimnion Thermocline Epilimnion

This block states that, e.g., within a thermally stratified lake, the Hypolimnion
layer is directly below the Thermocline layer, and the Thermocline layer is
directly below the Epilimnion layer.

Transitive Blocks. Transitive blocks are special cases of relationship blocks
where the object property is asserted to be transitive. That is, if a property p
is declared to be transitive, and p relates an individual x to an individual y and
y to an individual z, then p is assumed to also relate x to z. Rows containing
transitive blocks take the form

5



transitive p c1 c2 . . . cn (n ≥ 2)

where p is an object property and each c is a class. The following block is a
simple example of a transitive relationship definition.

transitive hasPart Body Head Eye Retina

This block states that every instance of the class Body has a Head as a part,
every instance of the class Head has an Eye as a part, and every instance of the
class Eye has a Retina as a part. Moreover, because the hasPart property above
is defined to be transitive, it is possible to infer that every instance of Body also
has an Eye and a Retina as a part through the inherited relationship restrictions
Body v ∃hasPart.Head, Head v ∃hasPart.Eye, and Eye v ∃hasPart.Retina.

Cardinality Blocks. Cardinality blocks are also similar to relationship blocks.
We consider three types of cardinality blocks for defining minimum, maximum,
and exact cardinality restrictions. Rows containing minimum blocks take the
form

min p m c1 c2 . . . cn (n ≥ 2)

where m is the minimum number of properties p that instances of class ci must
have to instances of concept ci+1, for 1 ≤ i < n. For each class ci, a minimum
cardinality block induces the description logic axiom ci v (≤ m) p.ci+1 stating
that each instance of ci must be p-related to at least m unique instances of ci+1.
The following two blocks demonstrate simple minimum cardinality constraints.

min hasPart 1 Body Head Nose
min hasPart 2 Head Eye

The first block states that instances of the class Body have at least one Head
as a part, which in turn have at least one Nose as a part.1 The second block
states that instances of the class Head have at least two Eyes as parts.

Rows containing maximum blocks take the form

max p m c1 c2 . . . cn (n ≥ 2)

where m is the maximum number of properties p that instances of concept ci may
have to instances of concept ci+1, for 1 ≤ i < n. For each class ci, a maximum
cardinality block induces the description logic axiom ci v (≥ m) p.ci+1 stating
that each instance of ci may be p-related to at most m unique instances of ci+1.
The following two blocks demonstrate simple maximum cardinality constraints.

max hasPart 1 Body Head Nose
max hasPart 2 Head Eye

1Cardinality restrictions ensuring participation to at least one property are typically not
given through minimum cardinality blocks since they are also implied by relationship blocks.

6



The first block states that instances of the class Body have at most one Head as
a part, which in turn has at most one Nose as a part. The second block states
that instances of the class Head have at most two Eyes as parts.

Rows containing exact blocks take the form

exact p m c1 c2 . . . cn (n ≥ 2)

where m is the number of properties p that instances of concept ci must have to
instances of concept ci+1, for 1 ≤ i < n. For each class ci, an exact block induces
the description logic axiom ci v (= m) p.ci+1 stating that each instance of ci

must be p-related to m unique instances of ci+1.

Inverse Blocks. Inverse blocks state that two object properties are inverses of
each other. If p1 and p2 are defined to be inverse properties, whenever p1 relates
an individual x to an individual y then p2 (as the inverse of p1) is assumed to
relate y to x. Rows containing inverse blocks take the form

inverse p1 p2

where p1 and p2 are object properties. A common example of inverse properties
are hasPart and partOf, i.e., if an individual x has an individual y as a part, then
y is by definition a part of x.

Sufficient Blocks. Sufficient blocks are similar to synonym blocks in that
they state equivalences between classes. A sufficient block serves as a modifier
to entity blocks, relationship blocks (including transitive blocks), and cardinality
blocks, modifying the associated description logic axioms by using equivalence
(≡) in place of subclass (v). For example the block

sufficient relationship hasPart Mammal Hair

induces the description logic axiom Mammal ≡ ∃hasPart.Hair stating that any
individual that has Hair as a part is a Mammal. Additionally, we allow rela-
tionship blocks within a sufficient block to be extended with not to state that
the absence of the property is a defining characteristic of the class. For example
the following blocks

sufficient entity Mammal Eutheria
sufficient relationship not hasPart Eutheria EpipubicBone

induces the axiom Eutheria ≡ Mammal u ¬∃hasPart.EpipubicBone stating that
any Mammal that does not have an Epipubic Bone as a part is a Eutheria. Note
also that multiple sufficient blocks for a particular class result in a single axiom
in which each constraint (i.e., class constructor) is combined via intersection
(u).

Comment Blocks. Comment blocks provide a mechanism to add plain-text
comments to owlifier tables. A description block attaches a plain-text comment
to classes and properties. Rows containing description blocks take the form

7



description c or p s

where the string s is associated as a comment to the class c or property p. A
note block attaches comments to the current ontology. Rows containing note
blocks take the form

note s

where s is a comment string.

3. Additional Features of Owlifier

Here we briefly describe some of the additional features of owlifier, specifically
focusing on the use of disjoint classes, owlifier reasoning, and additional block
syntax.

3.1. Disjoint Class Inference
OWL is based on the open world assumption, which can lead to a number

of ontology development “pitfalls” for those new to the language [21, 19]. One
example is in the creation of disjoint classes. In particular, unless explicitly
asserted, distinct classes within an OWL-DL ontology are not assumed to be
disjoint. However, in many ontologies a large number of classes are typically
defined as being disjoint (e.g., sibling classes), and stating these disjoint con-
straints is often time consuming since each pair of classes must be given an
explicit disjoint assertion. Editors such as Protege [11] provide shortcuts via
the user interface to create specific sets of disjoint assertions, e.g., by allowing a
user to define all children of a particular class as disjoint. In general, however,
many users expect such classes to be disjoint by default [19] and this expectation
often leads to modeling errors.

Alternatively, the default assumption in owlifier is that distinct classes are
disjoint. Specifically, as an owlifier table is converted to an OWL-DL ontology,
the system analyzes the class hierarchy structure and identifies pairs of classes
that are: (1) not related via subclass relations (either direct or indirect sub-
classes); (2) not defined as synonyms; and (3) not explicitly defined to overlap
via an overlap block. Each such pair of classes is then asserted by owlifier in the
resulting ontology as being disjoint. As described in [19], undeclared disjoint
classes are a common problem in ontology development using OWL-DL and of-
ten limit the utility of reasoning systems (by limiting the inferences that can be
obtained). The approach employed in owlifier for handling disjoint classes makes
the common expectations of users the default case, which in general should lead
to a more intuitive ontology editing environment and an overall fewer number
of modeling mistakes.

8



3.2. Reasoning in Owlifier

Blocks in owlifier are unambiguous, i.e., for every owlifier block (or set of
blocks in the case of sufficient blocks) there is a well-defined set of corresponding
OWL-DL axioms. This property is important because it implies that reasoning
can be performed over ontologies defined in owlifier using standard OWL-DL
reasoners. We use this capability in our current owlifier implementation (de-
scribed further in Section 4) to verify ontologies defined using owlifier and report
possible errors to users.

In general, new axioms are inferred from an owlifier ontology primarily from
the use of synonym blocks, sufficient blocks, and transitive blocks (whose infer-
ences are described in the previous section). For instance, let A, B, and C be
classes and P be an object property. From an axiom A ≡ B generated from a
synonym block, and an axiom B v ∃P.C generated from a relationship block,
the axiom A v ∃P.B would be inferred. Thus, the axioms of a particular class
are “inherited” by all of the synonyms of the class. Similarly, from an axiom
A ≡ ∃P.C generated from a sufficient block, and an axiom B v ∃P.C generated
from a relationship block, the axiom B v A would be inferred. For both the
case of synonym and sufficient blocks, the use of equivalence permits a number
of additional inferences to be made via an OWL-DL reasoner.

As described in [19] additional reasoning can occur within OWL-DL ontolo-
gies when domain and range axioms are provided (as well as, e.g., property
closure axioms). We explicitly do not consider these constraints in the current
version of owlifier because they also often result in modeling errors for inexperi-
enced OWL-DL users [19]. Instead, we adopt the approach of more traditional
description logics, which do not have explicit domain and range axioms. Al-
though not currently supported in owlifier, domain and range constraints as
well as property closure axioms can be inferred from given relationship blocks.

3.3. Sparse Blocks
To help simplify the creation of class hierarchies and property sequences

(including transitive, cardinality, and sufficient blocks), we allow for “sparse”
blocks that inherit missing information from their closest proceeding block. For
instance the following entity blocks

entity EcologicalHabitat Estuary Bay
entity EcologicalHabitat Estuary Fjord
entity EcologicalHabitat Marsh TidalMarsh
entity EcologicalHabitat Marsh SaltMarsh

can be equivalently represented in owlifier using the following sparse blocks.

entity EcologicalHabitat Estuary Bay
Fjord

Marsh TidalMarsh
SaltMarsh

9



Owlifier

Scientist

Text file of 

ontology 

definitions 

(blocks)

Resulting 

OWL

Ontology

Ontology

Reasoner

create ontology via 

owlifier conventions

Standard Spreadsheet Tools

Scientist / KR Expert

generate OWL

from spreadsheet

Standard OWL Tools

KR Expert

refine/extend

ontology

OWL Imports

Figure 1: The basic owlifier application and relation to other technologies.

In general, the use of sparse blocks simplifies ontology creation by not requiring
users to enter every redundant field explicitly, which in turn can simplify the
overall layout of the ontology within a spreadsheet. Additionally, owlifier does
not place constraints on the order of blocks within a spreadsheet. Classes also
do not need to be explicitly defined within an entity block, e.g., classes without
corresponding entity blocks can be introduced simply through synonym and re-
lationship blocks. This typically occurs when a particular class does not partic-
ipate as a subclass or superclass of another class in the current ontology. Taken
together, these appraoches allow users to enter minimal information by limiting
redundancy and by supporting a range of inferences, while at the same time
reducing the causes of many errors commonly made in ontology development
by non-experts.

4. The Owlifier Implementation

Figure 1 shows the general architecture of the owlifier application. A scientist
or researcher first creates a spreadsheet containing a set of ontology definitions
using owlifier conventions. The spreadsheet is then exported as a plain-text file
containing the owlifier table, e.g., using a CSV or tab-delimited format. The
owlifier table is then sent to the owlifier application, which performs a number of
steps that include: (i) parsing the file; (ii) generating the corresponding OWL-
DL representation (e.g., in the current implementation, the Jena API is used
[7]); (iii) validating the ontology and ensuring it is consistent via an OWL-DL
reasoner (e.g., the current implementation uses Pellet [20]); and (iv) outputting
the corresponding OWL-DL file. The resulting OWL file can then be refined and
extended via existing OWL tools (e.g., Protege or SWOOP). It is possible that
the refined ontology is converted back to a corresponding owlifier representation
(shown using dashed lines in Figure 1). While straightforward to perform, this
last conversion is not information preserving since not all OWL-DL constructs
are represented through owlifier blocks.

10



The current implementation of the owlifier application is written in Java and
supports a subset of the blocks defined in Section 2. In particular, we are cur-
rently extending owlifier to support cardinality and sufficient blocks as well as
to perform the above conversion from OWL-DL files to corresponding owlifier
blocks. As noted above, the current implementation, although it does not sup-
port all of the blocks defined here, is being used within a project focused on
supporting trait data and many of the extensions outlined here are based on
these experiences. In addition, owlifier has been used to construct term hierar-
chies from large sets of keywords (harvested from existing metadata documents)
as well as to define articulations between existing ontologies and the observation
ontology defined in [14].

5. Conclusion

This paper presents a new approach for developing ontologies to address
barriers in ontology development and adoption by ecologists. Our approach
allows scientists to use familiar spreadsheet software (e.g., frequently used by
ecologists for storing and analyzing data) to create ontologies by filling in a set
of templates, or blocks, that generate OWL-DL class hierarchies, properties,
and constraints via the owlifier application. This approach can provide a more
intuitive and accessible ontology editing environment for ecologists, especially
compared to existing OWL-based tools that require considerable expertise in
the underlying logic formalisms.

Protege provides a variety of ontology editing plug-ins, including a simple
interface for text-based editing of class hierarchies. In [12], an approach is
described for importing spreadsheet-based ontology descriptions into Protege.
However, this approach aims at supporting ad-hoc spreadsheet structures by
providing an intermediate interface for mapping these structures into ontology
axioms. This approach is similar to others (e.g., [9, 4, 1]) for defining mappings
from relational data to RDF and OWL ontology class and instance data. To the
best of our knowledge, however, our approach is the first to consider a detailed
set of templates that can support a large subset of existing OWL constructs.
In addition, we define a number of shortcuts for creating owlifier tables, includ-
ing sparse blocks and default semantics (e.g., disjoint classes, which is a form
of global taxonomic constraint defined in [22]) that further simplify ontology
creation for end users.

As future work, we intend to extend our current owlifier implementation
to support the full set of blocks defined above. We also intend to explore
approaches to fully support conversions between owlifier tables and OWL-DL
ontologies. In particular, we want to extend owlifier to re-apply changes made
by knowledge representation experts that previously modified the OWL-DL on-
tology generated by owlifier. For instance, if an OWL-DL ontology generated
from an owlifier table is refined and extended by a knowledge representation
expert, then converted back into an owlifier ontology that is further edited and
extended by a scientist, and then converted again into an OWL-DL ontology, we
want to maintain (i.e., re-apply) the original extensions and edits created by the

11



knowledge representation expert that are still relevant. We are also developing
extensions to owlifier to support conversion into the observation ontology frame-
work presented in [5] and intend to perform additional testing and evaluation
of the owlifier approach with ecologists.

References

[1] Y. An, A. Borgida, and J. Mylopoulos. Discovering the semantics of rela-
tional tables through mappings. J. Data Semantics VII, 4244:1–32, 2006.

[2] M. Ashburner, et al . Gene ontology: tool for the unification of biology.
Nat. Genet., 25:25–29, 2000.

[3] J. Bard and S. Rhee. Ontologies in biology: design, applications, and future
challenges. Nat. Rev. Genet., 5:213–221, 2004.

[4] C. Bizer. D2R MAP—A database to RDF mapping language. In Interna-
tional World Wide Web Conference (WWW), pages 20–24, 2003.

[5] S. Bowers, J. S. Madin, and M. P. Schildhauer. A conceptual modeling
framework for expressing observational data semantics. In International
Conference on Conceptual Modeling (ER), volume 5231 of Lecture Notes
in Computer Science, pages 41–54, 2008.

[6] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic ar-
chitecture for storing and querying rdf and rdf schema. In International
Semantic Web Conference (ISWC), volume 2342 of Lecture Notes in Com-
puter Science, pages 54–68. Springer, 2002.

[7] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and
K. Wilkinson. Jena: implementing the semantic web recommendations.
In International Conference on the World Wide Web (WWW), pages 74–
83. ACM, 2004.

[8] B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and
U. Sattler. OWL 2: The next step for OWL. Web Semantics: Science,
Services and Agents on the World Wide Web, 2008. in press.

[9] L. Han, T. Finin, C. S. Parr, J. Sachs, and A. Joshi. Rdf123: From spread-
sheets to rdf. In International Semantic Web Conference (ISWC), pages
451–466, 2008.

[10] A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca-Grau, and J. Hendler. Swoop:
A ‘web’ ontology editing browser. Journal of Web Semantics, 4(2), 2005.

[11] H. Knublauch, M. A. Musen, and A. L. Rector. Editing description logic on-
tologies with the Protégé OWL Plugin. In International Workshop on De-
scription Logics (DL), volume 104 of CEUR Workshop Proceedings, 2004.

12



[12] J. Kola and A. Rector. Importing spreadsheet data into protege: Spread-
sheet plug-in. In Proceedings of the International Protege Conference, 2007.

[13] J. Madin, S. Bowers, M. Schildhauer, and M. Jones. Advancing ecological
research with ontologies. Trends in Eco. and Evol., 23(3):159–168, 2008.

[14] J. Madin, S. Bowers, M. Schildhauer, S. Krivov, D. Pennington, and
F. Villa. An ontology for describing and synthesizing ecological observation
data. Ecological Informatics, 2(3):279–296, 2007.

[15] B. Motik, U. Sattler, and R. Studer. Query answering for owl-dl with rules.
J. Web Sem., 3(1):41–60, 2005.

[16] C. Parr and M. Cummings. Data sharing in ecology and evolution. Trends
Ecol. Evol., 20:362–363, 2004.

[17] E. Prudhommeaux and A. Seaborne, editors. SPARQL Query Language
for RDF. W3C. World Wide Web Consortium (W3C), January 2008.

[18] R. Raskin. Semantic web for earth and environmental terminology (sweet).
http://sweet.jpl.nasa.gov/.

[19] A. L. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch,
R. Stevens, H. Wang, and C. Wroe. Owl pizzas: Practical experience
of teaching owl-dl: Common errors & common patterns. In EKAW, pages
63–81, 2004.

[20] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A
practical owl-dl reasoner. J. Web Sem., 5(2):51–53, 2007.

[21] M. K. Smith, C. Welty, and D. L. McGuinness, editors. OWL Web Ontology
Language Guide. W3C. World Wide Web Consortium (W3C), February
2004.

[22] D. Thau and B. Ludäscher. Reasoning about taxonomies in first-order logi.
Ecological Informatics, 2(3):195–209, 2007.

[23] D. Tsarkov and I. Horrocks. Fact++ description logic reasoner: System
description. In International Joint Conference on Automated Reasoning
(IJCAR), volume 4130 of Lecture Notes in Artificial Intelligence, pages
292–297, 2006.

13


