
Owlifier: An Application for Creating Simple OWL Ontologies from

Spreadsheet-Based Knowledge Descriptions

Shawn Bowers Mark Schildhauer Joshua Madin Mathew Jones

Abstract

1 Introduction

2 Owlifier Syntax

An owlifier table defines an OWL-DL [?] ontology through a set of blocks. Each non-empty row in
an owlifier table corresponds to a block. The type of the block is given in the first column of the
row. The types of blocks supported by owlifier are as follows. It is assumed below that if any of
the properties or concepts used in a block are defined, i.e., are not imported from another ontology,
then they are added to the current ontology.

Import Block. Import blocks assign namespace labels to external ontologies. Each external
ontology is imported into the current ontology. We refer to the ontologies of import blocks as
imported ontologies. Using import blocks, concepts and properties of imported ontologies can be
used within other blocks of the table. An import block has the form

import NS URI

where NS is a namespace label and URI is an OWL ontology URI. Concepts and properties from im-
ported ontologies are referenced by prefixing the namespace label NS to the corresponding concept
or property name in the normal way.

Concept Block. Concept blocks specify concept and subconcept relationships. A concept block
has the form

concept C1 C2 . . . Cn (n ≥ 1)

where each concept Ci is asserted in the current ontology to subsume a concept Ci+1, for 1 ≤ i < n.
Each Ci in a concept block induces a DL axiom

Ci v Ci+1

If both Ci and Ci+1 are imported concepts, we say that the block defines an “articulation” (i.e.,
mapping) between them.

1

Synonym Block. Synonym blocks define an equivalence relationship between concepts. A syn-
onym block has the form

synonym C1 C2 . . . Cn (n ≥ 2)

where each concept Ci is asserted as being equivalent to concept Ci+1 in the current ontology, for
1 ≤ i < n.

Overlap Block. Except in certain situations (described further below), defined concepts are
assumed to be disjoint. Overlap blocks explicitly relax this assumption for a given set of concepts.
An overlap block has the form

overlap C1 C2 . . . Cn (n ≥ 2)

where each concept Ci is allowed to share instances with each concept Cj , for 1 ≤ i, j ≤ n. In
particular, Ci and Cj are not defined to be disjoint concepts in the current ontology.

Property Block. Property blocks define the required object properties of concepts. A property
block has the form

property P C1 C2 . . . Cn (n ≥ 2)

where P is an object property and each Ci is a concept, for 1 ≤ i ≤ n. For every concept Ci, the
property block induces the DL axiom

Ci v ∃P.Ci+1

stating that each instance of Ci has, amongst possibly other things, a relationship through P to
some instance of Ci+1. For example, the block

property hasPart Body Head Eye Retina

states that a body has at least one head, a head has at least one eye, and an eye has at least one
retina.

Attribute Block. Attribute blocks are used to define the required datatype properties of con-
cepts. An attribute block has the form

attribute P D C1 C2 . . . Cn (n ≥ 1)

where P is a datatype property, each Ci is a concept for 1 ≤ i ≤ n, and D is a datatype
(anyValueType, string, int, etc.). For every concept Ci, the property block induces the DL
axiom

Ci v (∃P.D)

stating that each instance of Ci has, amongst possibly other things, a relationship through P to a
data value of type D.

2

Value Block. Value blocks define required datatype property constant values for concepts. A
value block has the form

value P V C1 C2 . . . Cn (n ≥ 1)

where P is a datatype property, Ci is a concept for 1 ≤ i ≤ n, and V is a datatype value. For each
concept Ci, the value block induces the DL axiom

Ci v (V ∈ P)

stating that each instance of Ci has a value V for property P . The value restrictions stated by
value blocks are often used for defining so-called value partitions [?].

Inverse Block. Inverse blocks state that two object properties are inverses of each other. That
is, for inverse properties P1 and P2 and concept instances O1 and O2, if P1(O1) = O2, then
P2(O2) = O1. An inverse block has the form

inverse P1 P2

where P1 and P2 are object properties.

Transitive Block. Transitive blocks state that a property is transitive. That is, if P is transitive
and a concept instance O1 is related to an instance O2 by P , and O2 is related to an instance O3

by P , then O1 is also by definition related to O3 by P . A transitive block has the form

transitive P1 . . . Pn

where P is an object property.
[others?, e.g., associatiave

Minimum Block. Minimum blocks state the minimum number of properties P an instance of a
concept may have. Minimum blocks have the form

minimum P N C1 C2 . . . Cm

where N is the minimum number of properties P that instances of concept C1 may have to instances
of concept C2, C2 to C3, and so on. A cardinality block induces the DL axiom

Ci v (≤ NP.Ci+1)

stating that each instance of Ci must be related to at least N unique instances of Ci+1 via P . For
example, the blocks

minimum hasPart 1 Body Head
minimum hasPart 2 Head Eye

states that a body has at least one head and at least two eyes.

3

Maximum Block. Maximum blocks state the maximum number of properties P an instance of
a concept may have. Maximum blocks have the form

maximum P N C1 C2 . . . Cm

where N is the maximum number of properties P that instances of concept C1 may have to instances
of concept C2, C2 to C3, and so on. A cardinality block induces the DL axiom

Ci v (≥ NP.Ci+1)

stating that each instance of Ci may be related to at most N unique instances of Ci+1 via P . For
example, the blocks

maximum hasPart 1 Body Head
maximum hasPart 2 Head Eye

states that a body has at least one head and at least two eyes.

Sufficient Block. Sufficient blocks state that any instance having a property P to an instance
of a concept C2 is a sufficient condition for being an instance of a concept C1. A sufficient block
has the form

sufficient C1 P C2

where C1 is the target concept (i.e., denoting the concept definition), P is the sufficient property,
and C2 is the sufficient concept. A sufficient block induces the DL axiom

C1 ≡ ∃P.C2

Sufficient blocks provide a mechansism to construct simple class definitions (i.e., classes defined
precisely by other classes), primarily for use with value partitions. [NOTE: these should be anded
together?]

Description Block. Description blocks assign plain-text definitions to concepts and properties.
A description block has the form

description T S

where T is either a property or a concept and S is a description string.

Note Block. Note blocks add comments to the current ontology, and are ignored by owlifier. A
note block has the form

note S

where S is a comment string.
*** Say something about relaxing block syntax ... to make it easier to specify ontologies. Also,

allow blocks to be given in any order.

4

3 Owlifier Reasoning

e.g., Disjoint Concept Inference. Need to describe here when we say two concepts are disjoint.
Other inferences are now possible as well.

Errors:

• Blocks with syntactic errors

• Inverse properties can be between at most two properties. For instance, inverse(P1,P2) and
inverse(P1,P3) is not allowed.

• At most one description is allowed per property or concept.

• Property and concept names must be disjoint

Warnings:

• Cyclic concept hierarchies

• Re-definition of imported concepts (have to define what this means)

• Introduction of an inconsistency (can we show that this will never happen in a fully defined
ontology, i.e., one without imports)?

• ...

4 Owlifier Examples

• Simple example, no imports, no warnings

• Extension example

• Articulation example

4.1 Owlifier for OBOE

How it works with OBOE.

5 Owlifier API

Flags:

• Turn on/off consistency checking/validation

• Output format (OWL/RDF,

• Output inferred axioms

• Ontology URI to use

5

6 Discussion

Implementation, etc.

References

6

