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Abstract

Discovery and integration of data is important in many ecological studies, especially those that concern broad-scale
ecological questions. Data discovery and integration is often a difficult and time-consuming task for researchers, which is
due in part to the use of informal, ambiguous, and sometimes inconsistent terms for describing data content. Ontologies
offer a solution to this problem by providing consistent definitions of ecological concepts that in turn can be used to
annotate, relate, and search for data sets. However, unlike in molecular biology or biomedicine, few ontology development
efforts exist within ecology. Ontology development often requires considerable expertise in ontology languages and
development tools, which is often a barrier for ontology creation in ecology. In this paper we describe an approach for
ontology creation that allows ecologists to use common spreadsheet tools to describe different aspects of an ontology. We
present conventions for creating, relating, and constraining concepts through spreadsheets, and provide software tools
for converting these ontologies into equivalent OWL-DL representations. We also consider inverse translations, i.e., to
convert ontologies represented using OWL-DL into our spreadsheet format. Our approach allows large lists of terms to
be easily related and organized into concept hierarchies, and generally provides a more intuitive and natural interface
for ontology development by ecologists.

1. Introduction

Within the fields of molecular biology and biomedicine
considerable effort has gone into developing ontologies for
improving data discovery and integration [Ashburner, et
al , 2000, Bard and Rhee, 2004]. While similar benefits can
be obtained for ecological data, far fewer efforts exist to
develop broad and consistent terminologies within ecology
[Madin et al., 2008, Parr and Cummings, 2004]. The use of
formal ontologies can significantly enhance metadata de-
scriptions of ecological data. For instance, annotating data
with ontology terms can both help users interpret data
as well as enable advanced capabilities for data discovery
and integration, e.g., by exploiting subsumption and part-
of hierarchies as well as more formal constraints such as
cardinality restrictions on properties and term equivalence
[Madin et al., 2008].

Efforts to engage scientists in the development of on-
tologies typically leverage the W3C Web Ontology Lan-
guage (OWL) [Smith et al., 2004] as a standard XML syn-
tax for representing and sharing ontologies. A key advan-
tage of OWL is that it is supported by a wide range of
generic tools, including editors [Knublauch et al., 2004,
Kalyanpur et al., 2005], reasoning systems [Sirin et al.,
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2007, Tsarkov and Horrocks, 2006], query languages [Prud-
hommeaux and Seaborne, 2008, Motik et al., 2005], and
storage technologies [Carroll et al., 2004, Broekstra et al.,
2002]. However, most of these tools are primarily targeted
at experts in knowledge engineering and software develop-
ment familiar with the underlying description logic seman-
tics of OWL-DL [Grau et al., 2008]. This is especially true
with ontology editors (such as Protege, SWOOP, etc.),
which allow for very detailed ontology specifications, but
at the same time require considerable understanding of
the underlying ontology formalisms and syntax. The de-
velopment of the Gene Ontology (GO) has been underway
for over a decade within the molecular biology community,
and has lead to significant improvements in data interoper-
ability by enriching genomic and biomedical data resources
with annotations to community-based ontologies. A ma-
jor lesson learned from these efforts was the importance of
keeping the ontology focused, and indeed GO has a highly
delimited scope [Bada et al., 2004]. Ecology, on the other
hand, encompasses an extremely broad range of scales and
disciplines, such that a coordinated ontology development
effort would need to involve a large number of experts to
cover the diverse types of information relevant to ecological
investigations. We believe that ecological researchers must
also begin constructing ontologies for their own specialized
subdisciplines. However, due to the substantial expertise
in formal knowledge representation that is required to use
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most existing ontology editing tools, new tools and ap-
proaches are needed to enable the wide-scale creation and
adoption of ontologies in ecology.

This paper presents a novel approach for ontology cre-
ation that aims at being more intuitive for ecologists and
that can be used to rapidly construct large ontologies of
ecological terms (classes and properties). These terms can
then be used in subsequent steps to annotate ecological
data (instances), e.g., as in [Bowers et al., 2008, Berkley
et al., 2009]. Our approach is to allow scientists to use
common and familiar spreadsheet-based tools (e.g., Mi-
crosoft Excel, Apple Numbers, Open Office Spreadsheet)
to describe, in an intuitive way, different aspects of an on-
tology, and then to take these descriptions (represented
as spreadsheets) and convert them into full-fledged OWL
ontologies using a software application called owlifier.

An owlifier spreadsheet consists of a set of blocks that
have a predefined template structure for users to fill in.
Each non-empty row in an owlifier spreadsheet constitutes
a block. Each block defines different aspects of an ontol-
ogy including classes, subclasses, synonyms, and proper-
ties. We also provide blocks for plain-text descriptions of
classes and properties, and for referencing one or more ex-
isting ontologies (e.g., to extend an existing ontology or to
define ontology articulations). Blocks can be sparse (in-
heriting from previous blocks), which further simplifies the
creation of large ontologies by minimizing the amount of
redundant information that must be provided in the owli-
fier tabular representation. Several of the more advanced
OWL features are omitted in owlifier, primarily associ-
ated with properties (e.g., role inclusion axioms, domain
and range property restrictions, and data-type properties
among others), as these can be confusing for non-experts
and are more suitable for experienced knowledge modelers.

While not as expressive as OWL-DL, owlifier can be
used to produce ontology structures that are essential for
improved data discovery and integration [Madin et al.,
2007]. Just as important, because spreadsheet tools are
already frequently used by ecologists to store and analyze
data, owlifier can provide ecologists with a familiar and
accessible user interface for ontology creation. This ap-
proach also leverages the easy-to-use interfaces provided
by many spreadsheet tools for organizing and manipulat-
ing tabular data, e.g., via cut/copy/paste, search/replace,
sort, split-window, track-changes, freeze panes, and so on.
In this way, an ecologist can easily construct (or load) a
set of terms, and then incrementally organize these into
class hierarchies, properties, and constraints. The use
of an editing environment that is familiar to scientists
can significantly help improve the speed and understand-
ing of ontology construction and avoid the often time-
consuming task of locating, downloading, installing, and
learning fundamentally new software applications and in-
terfaces (e.g., CMAP-COE [Hayes et al., 2005], Protege
[Knublauch et al., 2004]). In initial experiments with ecol-
ogists and evolutionary biologists studying trait data, we
found that owlifier enabled them to quickly and easily com-

prehend and construct relatively complex and meaningful
ontologies.

The rest of this paper is organized as follows. In Sec-
tion 2 we describe the basic syntax and semantics of owli-
fier. The semantics of owlifier blocks is given by mapping
owlifier expressions to description-logic statements. Read-
ers unfamiliar with description-logic notation may safely
ignore these mappings, focusing instead on the descrip-
tions and examples of blocks given in Section 2. We de-
fine blocks that support a large subset of OWL-DL and
that also generally follow the ontology creation guidelines
defined in [Rector et al., 2004]. We also simplify certain
aspects of ontology creation using OWL, e.g., by assuming
classes are disjoint by default (unless specified otherwise)
[Rector et al., 2004]. In Section 3 we describe additional
characteristics of owlifier and discuss issues with respect
to classification and reasoning. In Section 4 we briefly
describe the owlifier implementation, and conclude in Sec-
tion 5 with related and future work. In general, the goal
of owlifier is not to support all constructs in OWL-DL,
but instead to provide a higher-level ontology syntax (via
spreadsheet blocks) that is easy for ecologists to use and
understand while also providing the necessary constructs
for developing typical ecological ontologies. By compiling
owlifier to OWL-DL, we also allow for experts to refine and
extend the ontology using more advanced ontology editing
tools if necessary (cf. Figure 1).

2. The Syntax and Semantics of Owlifier

As described above, an owlifier table defines an OWL-
DL [Smith et al., 2004] ontology through a set of blocks
representing one or more ontology definitions. Each non-
empty row in an owlifier table corresponds to a block. The
type of the block is given in the first column of the row.
We assume that if any properties or classes used in a block
are not imported from another ontology, then they are to
be added to the ontology being specified by the owlifier
table (i.e., the “current” ontology). In general, we name
blocks according to the terms used in [Bowers et al., 2008,
Madin et al., 2007] as opposed to the names used for cor-
responding constructs in OWL-DL. This choice of block
names helps to simplify terminology (e.g., we use “relation-
ship” below instead of “object property”), allows owlifier
to easily generate ontologies that extend the observational
model of [Bowers et al., 2008, Madin et al., 2007], and
avoids confusion with established terms commonly used
within ecology (e.g., “class”).

Import Blocks. Import blocks assign namespace labels
to external ontologies. Each external ontology is imported
into the current ontology. We refer to the ontologies of
import blocks as imported ontologies. Using import blocks,
classes and properties of imported ontologies can be used
within other blocks of an owlifier table. Rows containing
import blocks take the form
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import n u

where n is a namespace label and u is an OWL ontology
URI. Classes and properties from imported ontologies are
referenced by prefixing the namespace label n to the corre-
sponding class or property name in the normal way. As an
example, the following block imports the SWEET “Earth
Realm” ontology [Raskin and Pan, 2005].

import sweet http://sweet.jpl.nasa.gov/ontology/earthrealm.owl

With this import block the class denoting Marine Ecosys-
tems (a class defined in the SWEET ontology) can be re-
ferred to from within an owlifier table using the expression
sweet:MarineEcosystem. Because this class refers to a class
in another ontology, we refer to it as an imported class.

Entity Blocks. Entity blocks are the primary blocks used
to define ontologies. An entity block introduces new OWL
classes and specifies subclass relationships. Imported classes
may also be used within entity blocks by prefixing class
names with namespace labels (as described above). Rows
containing entity blocks take the form

entity c1 c2 . . . cn (n ≥ 1)

where each class ci is asserted in the current ontology to
subsume ci+1, for 1 ≤ i < n. That is, each ci in an
entity block induces the description logic axiom ci+1 v ci.
If both ci and ci+1 are imported classes, we say that the
block defines an “articulation” (i.e., mapping) between the
two classes. The following entity block defines a simple
subclass hierarchy.

entity PhysicalFeature AquaticPhysicalFeature River

This block states that Physical Feature, Aquatic Physi-
cal Feature, and River are classes; River is a subclass of
Aquatic Physical Feature; and Aquatic Physical Feature is
a subclass of Physical Feature. The following entity block
introduces a new class via an imported class.

entity sweet:MarineEcosystem IntertidalEcosystem

This block states that Intertidal Ecosystem is a subclass
of the Marine Ecosystem class imported from the SWEET
ontology. Similarly, assuming “marine” denotes an exist-
ing ontology of marine ecosystem concepts, the following
block defines a simple class articulation.

entity sweet:MarineEcosystem marine:DeepSeaEcosystem

This block states that the Deep Sea Ecosystem class of the
marine ontology is a subclass of the Marine Ecosystem
class of the SWEET ontology (thus defining a mapping
between these two ontologies).

Synonym Blocks. Synonym blocks define equivalence
relationships between ontology classes. Rows containing
synonym blocks take the form

synonym c1 c2 . . . cn (n ≥ 2)

where each class ci is equivalent to class ci+1 in the cur-
rent ontology, for 1 ≤ i < n. That is, each ci in a syn-
onym block induces a description logic axiom of the form
ci ≡ ci+1. The following synonym block creates a simple
equivalence relationship.

synonym Maize Corn

This block states that the Maize and Corn classes are syn-
onyms (equivalent classes). Similar to entity blocks, syn-
onym blocks often contain imported classes for extending
existing ontologies or defining ontology mappings.

Overlap Blocks. Except in certain situations (described
further in Section 3), classes are generally assumed to be
disjoint in owlifier. Overlap blocks explicitly relax this as-
sumption by stating that a given set of classes may share
common instances. Rows containing overlap blocks take
the form

overlap c1 c2 . . . cn (n ≥ 2)

where each class ci is allowed to share instances with each
class cj , for 1 ≤ i, j ≤ n. That is, a given ci and cj in an
overlap block are not defined to be disjoint classes in the
current ontology. As an example, consider the following
entity blocks that define the classes Estuary, Lagoon, and
Marsh as subclasses of Ecological Habitats.

entity EcologicalHabitat Estuary
entity EcologicalHabitat Lagoon
entity EcologicalHabitat Marsh

Given only these blocks, owlifier treats Estuary, Lagoon,
and Marsh as disjoint classes. To relax this assumption
and allow, e.g., types of Lagoons to also be types of Estu-
aries, we explicitly add the following overlap block

overlap Estuary Lagoon

In general, overlap blocks are rarely used but provide a
mechanism to override the default behavior of owlifier in
asserting disjoint classes.

Relationship Blocks. Relationship blocks define required
class object properties. An object property within OWL
is a property defined between two class instances. Rows
containing relationship blocks take the form

relationship p c1 c2 . . . cn (n ≥ 2)

where p is an object property and each c is a class. For
every class ci, the relationship block induces the descrip-
tion logic axiom ci v ∃p.ci+1 stating that each instance of
ci is p-related to some instance of ci+1, for 1 ≤ i < n. For
example, the following block states that instances of the
class California Voles live in Grassy Areas.

relationship livesIn CaliforniaVole GrassyArea
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In some cases, a particular property can apply to a se-
quence of classes, and for convenience, each such class can
be specified in owlifier using a single block. For example,
consider the following block.

relationship directlyBelow Hypolimnion Thermocline Epilimnion

This block states that, e.g., within a thermally stratified
lake, the Hypolimnion layer is directly below the Thermo-
cline layer, and the Thermocline layer is directly below the
Epilimnion layer.

Transitive Blocks. Transitive blocks are special cases of
relationship blocks where the object property is asserted
to be transitive. That is, if a property p is declared to be
transitive, and p relates an individual x to an individual y
and y to an individual z, then p is assumed to also relate
x to z. Rows containing transitive blocks take the form

transitive p c1 c2 . . . cn (n ≥ 2)

where p is an object property and each c is a class. The
following block is a simple example of a transitive relation-
ship definition.

transitive hasPart Body Head Eye Retina

This block states that every instance of the class Body has
a Head as a part, every instance of the class Head has an
Eye as a part, and every instance of the class Eye has a
Retina as a part. Moreover, because the hasPart property
above is defined to be transitive, it is possible to infer
that every instance of Body also has an Eye and a Retina
as a part through the inherited relationship restrictions
Body v ∃hasPart.Head, Head v ∃hasPart.Eye, and Eye v
∃hasPart.Retina.

Cardinality Blocks. Cardinality blocks are also similar
to relationship blocks. We consider three types of cardi-
nality blocks for defining minimum, maximum, and exact
cardinality restrictions. Rows containing minimum blocks
take the form

min p m c1 c2 . . . cn (n ≥ 2)

where m is the minimum number of properties p that in-
stances of class ci must have to instances of concept ci+1,
for 1 ≤ i < n. For each class ci, a minimum cardinal-
ity block induces the description logic axiom ci v (≤
m) p.ci+1 stating that each instance of ci must be p-related
to at least m unique instances of ci+1. The following
two blocks demonstrate simple minimum cardinality con-
straints.

min hasPart 1 Body Head Nose
min hasPart 2 Head Eye

The first block states that instances of the class Body have
at least one Head as a part, which in turn have at least one

Nose as a part.1 The second block states that instances of
the class Head have at least two Eyes as parts.

Rows containing maximum blocks take the form

max p m c1 c2 . . . cn (n ≥ 2)

where m is the maximum number of properties p that in-
stances of concept ci may have to instances of concept
ci+1, for 1 ≤ i < n. For each class ci, a maximum car-
dinality block induces the description logic axiom ci v
(≥ m) p.ci+1 stating that each instance of ci may be p-
related to at most m unique instances of ci+1. The follow-
ing two blocks demonstrate simple maximum cardinality
constraints.

max hasPart 1 Body Head Nose
max hasPart 2 Head Eye

The first block states that instances of the class Body have
at most one Head as a part, which in turn has at most one
Nose as a part. The second block states that instances of
the class Head have at most two Eyes as parts.

Rows containing exact blocks take the form

exact p m c1 c2 . . . cn (n ≥ 2)

where m is the number of properties p that instances of
concept ci must have to instances of concept ci+1, for
1 ≤ i < n. For each class ci, an exact block induces the de-
scription logic axiom ci v (= m) p.ci+1 stating that each
instance of ci must be p-related to m unique instances of
ci+1.

Inverse Blocks. Inverse blocks state that two object
properties are inverses of each other. If p1 and p2 are
defined to be inverse properties, whenever p1 relates an
individual x to an individual y then p2 (as the inverse of
p1) is assumed to relate y to x. Rows containing inverse
blocks take the form

inverse p1 p2

where p1 and p2 are object properties. A common exam-
ple of inverse properties are hasPart and partOf, i.e., if an
individual x has an individual y as a part, then y is by
definition a part of x.

Sufficient Blocks. Sufficient blocks are similar to syn-
onym blocks in that they state equivalences between classes.
We consider two types of sufficient blocks. A sufficient en-
tity block takes the form

sufficient entity c1 c2 . . . cn (n ≥ 2)

where each ci is a class. A sufficient entity block induces
the description logic axiom c1 ≡ c2 u . . . u cn stating that
the class c1 is equivalent to the intersection of the classes
c2 through cn. Similarly, a sufficient relationship block
takes the form

1Cardinality restrictions ensuring participation to at least one
property are typically not given through minimum cardinality blocks
since they are also implied by relationship blocks.
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sufficient relationship (not) p c1 c2

where p is an object property, c1 and c2 are classes, and
not is an optional qualifier. A sufficient relationship block
(without a not qualifier) induces the description logic ax-
iom c1 ≡ ∃p.c2 stating that the class c1 is equivalent to the
set of individuals that are p-related to at least one individ-
ual of class c2. The not qualifier states that the absence of
the property is a defining characteristic of the class. Thus,
a sufficient relationship block containing a not qualifier in-
duces the description logic axiom c1 ≡ ¬∃p.c2. The use
of multiple sufficient blocks for a particular class results
in a single axiom in which each constraint (i.e., class con-
structor) is combined via intersection (u). For example,
the following blocks

sufficient relationship hasPart Mammal Hair
sufficient entity Eutheria Mammal
sufficient relationship not hasPart Eutheria EpipubicBone

induce the following description logic axioms.

Mammal ≡ ∃hasPart.Hair
Eutheria ≡ Mamma u ¬∃hasPart.EpipubicBone

These axioms state that any individual that has Hair as
a part is a Mammal and that any Mammal that does not
have an Epipubic Bone as a part is a Eutheria.

Comment Blocks. There are two types of comment
blocks that each provide a mechanism to add plain-text
comments to owlifier tables. A description block attaches
a plain-text comment to classes and properties. Rows con-
taining description blocks take the form

description c or p s

where the string s is associated as a comment to the class
c or property p. A note block attaches comments to the
current ontology. Rows containing note blocks can occur
anywhere within an owlifier table, and take the form

note s

where s is a comment string.

3. Additional Features of Owlifier

Here we briefly describe some of the additional fea-
tures of owlifier, specifically focusing on the use of disjoint
classes, owlifier reasoning, and additional block syntax.

3.1. Disjoint Class Inference
OWL is based on the open world assumption, which

can lead to a number of ontology development “pitfalls”
for those new to the language [Smith et al., 2004, Rector
et al., 2004]. One example is in the creation of disjoint
classes. In particular, unless explicitly asserted, distinct
classes within an OWL-DL ontology are not assumed to
be disjoint. However, in many ontologies a large num-
ber of classes are typically defined as being disjoint (e.g.,

sibling classes), and stating these disjoint constraints is
often time consuming since each pair of classes must be
given an explicit disjoint assertion. Editors such as Pro-
tege [Knublauch et al., 2004] provide shortcuts via the user
interface to create specific sets of disjoint assertions, e.g.,
by allowing a user to define all children of a particular class
as disjoint. In general, however, many users expect such
classes to be disjoint by default [Rector et al., 2004] and
this expectation often leads to modeling errors.

Alternatively, the default assumption in owlifier is that
distinct classes are disjoint. Specifically, as an owlifier table
is converted to an OWL-DL ontology, the system analyzes
the class hierarchy structure and identifies pairs of classes
that are: (1) not related via subclass relations (either di-
rect or indirect subclasses); (2) not defined as synonyms;
and (3) not explicitly defined to overlap via an overlap
block. Each such pair of classes is then asserted by owlifier
in the resulting ontology as being disjoint. As described in
[Rector et al., 2004], undeclared disjoint classes are a com-
mon problem in ontology development using OWL-DL and
often limit the utility of reasoning systems (by limiting the
inferences that can be obtained). The approach employed
in owlifier for handling disjoint classes makes the common
expectations of users the default case, which in general
should lead to a more intuitive ontology editing environ-
ment and an overall fewer number of modeling mistakes.

3.2. Reasoning in Owlifier

Blocks in owlifier are unambiguous, i.e., for every owli-
fier block (or set of blocks in the case of sufficient blocks)
there is a well-defined set of corresponding OWL-DL ax-
ioms. This property is important because it implies that
reasoning can be performed over ontologies defined in owli-
fier using standard OWL-DL reasoners. We use this capa-
bility in our current owlifier implementation (described fur-
ther in Section 4) to verify ontologies defined using owlifier
and report possible errors to users.

In general, new axioms are inferred from an owlifier
ontology primarily from the use of synonym blocks, suf-
ficient blocks, and transitive blocks (whose inferences are
described in the previous section). For instance, let A, B,
and C be classes and P be an object property. From an
axiom A ≡ B generated from a synonym block, and an
axiom B v ∃P.C generated from a relationship block, the
axiom A v ∃P.B would be inferred. Thus, the axioms of a
particular class are “inherited” by all of the synonyms of
the class. Similarly, from an axiom A ≡ ∃P.C generated
from a sufficient block, and an axiom B v ∃P.C generated
from a relationship block, the axiom B v A would be in-
ferred. For both the case of synonym and sufficient blocks,
the use of equivalence permits a number of additional in-
ferences to be made via an OWL-DL reasoner.

As described in [Rector et al., 2004] additional reason-
ing can occur within OWL-DL ontologies when domain
and range axioms are provided (as well as, e.g., property
closure axioms). We explicitly do not consider these con-
straints in the current version of owlifier because they also
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Figure 1: The basic owlifier application and relation to other technologies.

often result in modeling errors for inexperienced OWL-DL
users [Rector et al., 2004]. Instead, we adopt the approach
of more traditional description logics, which do not have
explicit domain and range axioms. Although not currently
supported in owlifier, domain and range constraints as well
as property closure axioms can be inferred from given re-
lationship blocks.

3.3. Sparse Blocks
To help simplify the creation of class hierarchies and

property sequences (including transitive, cardinality, and
sufficient blocks), we allow for “sparse” blocks that inherit
missing information from their closest proceeding block.
For instance the following entity blocks

entity EcologicalHabitat Estuary Bay
entity EcologicalHabitat Estuary Fjord
entity EcologicalHabitat Marsh TidalMarsh
entity EcologicalHabitat Marsh SaltMarsh

can be equivalently represented in owlifier using the follow-
ing sparse blocks.

entity EcologicalHabitat Estuary Bay
Fjord

Marsh TidalMarsh
SaltMarsh

In general, the use of sparse blocks simplifies ontology
creation by not requiring users to enter every redundant
field explicitly, which in turn can simplify the overall lay-
out of the ontology within a spreadsheet. Additionally,
owlifier does not place constraints on the order of blocks
within a spreadsheet. Classes also do not need to be ex-
plicitly defined within an entity block, e.g., classes with-
out corresponding entity blocks can be introduced simply
through synonym and relationship blocks. This typically
occurs when a particular class does not participate as a

subclass or superclass of another class in the current on-
tology. Taken together, these approaches allow users to
enter minimal information by limiting redundancy and by
supporting a range of inferences, while at the same time
reducing the causes of many errors commonly made in on-
tology development by non-experts.

4. The Owlifier Implementation

Figure 1 shows the general architecture of the owlifier
application. A scientist first creates a spreadsheet con-
taining a set of ontology definitions using owlifier conven-
tions. The spreadsheet is then exported as a plain-text
file containing the owlifier table, e.g., using a CSV or tab-
delimited format. The owlifier table is then sent to the
owlifier application, which performs a number of steps that
include: (i) parsing the file; (ii) generating the correspond-
ing OWL-DL representation (e.g., in the current imple-
mentation, the OWL-API is used [Horridge et al., 2007],
although Jena [Carroll et al., 2004] could be used as well);
(iii) validating the ontology and ensuring it is consistent
via an OWL-DL reasoner (e.g., the current implementa-
tion uses Pellet [Sirin et al., 2007]); and (iv) outputting
the corresponding OWL-DL file. The resulting OWL file
can then be refined and extended via existing OWL tools
(e.g., Protege or SWOOP). It is also possible for the refined
ontology to be converted back to a corresponding owli-
fier representation (shown using dashed lines in Figure 1).
While straightforward to perform, this “back” conversion
is not information preserving since not all OWL-DL state-
ments can be represented through owlifier blocks. That
is, the conversion from OWL-DL to owlifier will only pre-
serve OWL-DL constructs that are represented by owlifier
blocks. In particular, owlifier does not support a num-
ber of OWL-DL language constructs, including domain
and range constraints, datatype properties, sub proper-
ties, property constraints (i.e., functional, symmetric, and
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inverse functional), value restrictions, individuals, etc., as
well as various combinations of OWL-DL constructs.

The current implementation of owlifier is written as an
open-source Java application2 and supports a subset of
the blocks defined in Section 2. In particular, we are cur-
rently extending owlifier to fully support sufficient blocks
(the remaining blocks described in Section 2 are imple-
mented) as well as the potentially lossy, back conversion
from OWL-DL files to corresponding owlifier blocks. The
current implementation of owlifier is being used within a
project focused on integrating vegetation trait data. As
noted above, not all the blocks described here are yet sup-
ported, however, these priority needs are clearly emerging
from our interactions with the vegetation scientists. Nev-
ertheless, these scientists were able to rapidly prototype
and revise their trait ontologies using owlifier, with little
to no instruction in formal logic or knowledge modeling.
In addition, owlifier is being used to construct term hierar-
chies from large sets of keywords (harvested from existing
metadata documents) as well as to define articulations be-
tween existing ontologies and the observation ontology de-
fined in [Madin et al., 2007]. As we continue to use owlifier
within these projects, we intend to extend the application
as needed to support additional blocks and services.

5. Conclusion

This paper presents a new approach for developing on-
tologies to address barriers in ontology development and
adoption by ecologists. Our approach allows scientists to
use familiar spreadsheet software (e.g., frequently used by
ecologists for storing and analyzing data) to create ontolo-
gies by filling in a set of templates, or blocks, that gener-
ate OWL-DL class hierarchies, properties, and constraints
via the owlifier application. This approach can provide a
more intuitive and accessible ontology editing environment
for ecologists, especially compared to existing OWL-based
tools that require considerable expertise in the underly-
ing logic formalisms. Similar to standard OWL ontolo-
gies, owlifier spreadsheets can import and extend existing
OWL-DL ontologies (including those generated from owli-
fier spreadsheets), which further supports the community
development and interoperability of ontologies. Blocks in
owlifier (or similarly, partially filled in blocks) can also be
reused during ontology creation to help ensure that fu-
ture ontology development adheres to best practices and
community standards (e.g., similar to “part-of” properties
defined in the Gene Ontology [Bada et al., 2004]).

Protege provides a variety of ontology editing plug-
ins, including a simple interface for text-based editing of
class hierarchies. In [Kola and Rector, 2007], an approach
is described for importing spreadsheet-based ontology de-
scriptions into Protege. However, this approach aims at
supporting ad-hoc spreadsheet structures by providing an

2See https://semtools.ecoinformatics.org/owlifier

intermediate interface for mapping these structures into
ontology axioms. This approach is similar to others (e.g.,
[Han et al., 2008, Bizer, 2003, An et al., 2006]) for defining
mappings from relational data to RDF and OWL ontology
class and instance data. In addition to these approaches,
a number of visual editing environments have been devel-
oped to help novice users create OWL-based ontologies
(e.g., [Hayes et al., 2005]). To the best of our knowledge,
however, our approach is the first to consider an intuitive
spreadsheet-based approach together with a detailed set of
templates that can support a large subset of existing OWL
constructs. In addition, we define a number of shortcuts
for creating owlifier tables, including sparse blocks and de-
fault semantics (e.g., disjoint classes) that further simplify
ontology creation for end users.

As future work, we plan to extend our current owlifier
implementation to support the full set of blocks defined
here as well as introduce additional blocks, e.g., for cre-
ating OWL datatype properties. We also would like to
explore approaches for supporting round-trip conversions
between owlifier tables and OWL-DL ontologies that allow
scientists and knowledge-representation experts to incre-
mentally develop owlifier-based ontologies. Specifically, we
want to extend the owlifier application so that it can store
and re-apply changes made by knowledge-representation
experts that previously modified an OWL-DL ontology
generated by owlifier. For instance, if an OWL-DL ontol-
ogy generated from an owlifier spreadsheet is refined and
extended by a knowledge-representation expert, then con-
verted back into an owlifier ontology that is further edited
and extended by a scientist, and then converted again into
an OWL-DL ontology, we want to maintain (i.e., re-apply)
the original extensions and edits created by the knowledge-
representation expert that are still relevant (thus support-
ing lossless conversions). We also plan to extend the owli-
fier application to support translation into the observation
ontology framework presented in [Bowers et al., 2008] and
perform additional testing and evaluation of the owlifier
approach with a wide range of ecologists.
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