
1 Key constraints

In real world, the dataset collected by an ecologist to describe measurents and observations is not normalized.
I.e., two different rows in the table may have a big amount of “redundant” ’information to describe an object
(e.g., entity).

As discussed in [?] we can use the OBOE cenceptual model to capture the semantic relationships from
the columns to their real meaning. However, the mapping from the columns to the OBOE model still cannot
directly solve the problem of getting concise informatin (e.g., unique entity instances, unique observation
instances, etc.)

Given Table 1(a), it records the fact that four times of dbh of some trees are taken. Very often, an
ecologist may ask questions like this: Give me the average dbh for every different trees. First, we have four
rows here for trees. But how many tree entity instances are here is a question.

There are several cases to consider:

• Case 1: The naive extreme way to interpret the data is that each observation is from different tree
entity. Then, we have four tree entities. This may be too strict. People may say, well, I have some
observations for the same entity.

• Case 2: The second naive extreme way is to interpret that different spp represent the different tree
entity. That’s obvious that piru is different from abba. With this constraint, we get two tree entities.
However, an obvious fact is also true that one piru tree cannot at the different plots. (It is another
story if this tree was migrated from one plot to another.)

• Case 3: Following Case 2, people want to further limit that the same spp in the same plt should
represent the same tree entity set.

plt spp dbh
A piru 35.8
A piru 36.2
B piru 33.2
B abba 34

plt area spp dbh
A 1.0 piru 35.8
A 1.1 piru 36.2
B 2.0 piru 33.2
B 2.0 abba 34

(a) (b)

Table 1: Dataset

Obviously, to answer this question, we not only need to figure out what are the observations and mea-
surements, we also need proper constraints to help us understand whether different observations are from
the same entity or not.

To tackle this problem, we proposed to use key yes, distinct yes and identifying yes constraints.
[from HP: Describe or define key yes, distinct yes, identifying yes]

Definition 1.1 (Key measurement types) The key mensurement tytpes of an observation are the mea-
surement types that are used to distinguish one observation/entity instance from the other.

In most simple case, when an observation type does not have context, the key measurement types are specified
with “key yes”.

Key constraints: in this report (paper), we use the term key constraints to refer to the general con-
straints of the above three types key yes, distinct yes and identifying yes.

2 Valid annotation constraints

Based on the semantic meaning of these key constraints, we can see that they have some correlations. Before
we give any further examples to explain such correlations, we list the correlation rules among them.

1



• Rule 1: If an observation type is specified with distinct yes, all its measurement types are automatically
marked with key yes.

• Rule 2: If the context of an observation type is specified with identifying yes. This observation type
MUST have some key measurement types. And the context observation type also MUST have key
measurement types too.

The following example shows an example why Rule 1 is needed. Given the data in Table 1(b) and the
following annotation.
observation “o1” distinct yes

entity “Plot”
measurement “m1” key yes

characteristic “EntityName”
standard “Nominal”

measurement “m2”
characteristic “area”
standard “sqft”
· · ·

According to the annotation, if two plots have the same value for “EntityName”, they represent the same
plot observation. Obviously, it has problem to interprete the data in Table 1 with this annotatioin. E.g., the
first and second rows catch information about plot with EntityName A. Accoring to the annotation, they
should be the same plot obervation. However, the data shows that this one plot has two different areas 1.0
and 1.1, so, there is confusion here.

For this case, we can have several ways to make the annoation consistent. The first alternative to tackle
this confusion is to change the annotation. We can let m2 automatically becomes key measurement type of
o1. Then, every different (m1, m2) value pair denote a different observation instance which come from the
different entity instance. The second alternative is to get rid of distinct yes for o1, which means that (A, 1.0)
and (A, 1.1) are different observation instances of the same entity instance A.

In our materialization algorithm, we assume that the annotations on the dataset are valid, i.e., they
comply with the rules among these constraints.

3 Data materialization algorithm

The MaterializeDB algorithm catches the key, distinct and identifying constraints in the annotation during
the materialization process. The input of the algorithm is the Dataset and the annotations A.∗ on it. Each
row in the input dataset represents the information related to one or more observations and their contexts.
The input A.∗ represents the annotation information. More specifically,

• A.MeasType = {〈MeasTypeId,ObsTypeId, CharType, StdType, ProtType, Precision, isKey〉};

• A.ObservationType = {〈ObsTypeId,EntTypeId, isDistinct〉}
Note that, we hide the “AnnotId” in this schema, which denotes the resource the annotation is on. We
do not include this because the algorithm focuses on dealing with annotations on one resource. This
way, we can simplify the description.

• A.ContextType = {〈ObsTypeId, ContextObsTypeId,RelType, isIdentify〉}

• A.Map = {〈MeasTypeId,ResAttribute, Cond, V al〉}

The output of the algorithm is a set of materialized tables represented in the OBOE model and denoted
by OBOE.∗. In detail,

• OBOE.Observation = {〈ObsId,ObsType,EntId〉} keeps all the observation instances;

2



• OBOE.Measurement = {〈MeasId,ObsId,MeasType, V al〉} for all the measurement instances;

• OBOE.Entity = {〈EntId,EntType〉} for all the entity instances;

• OBOE.Context = {〈ObsId, ConextObsId, ContextType〉} for all the context instances;

Algorithm 1 shows the framework of our algorithm. In this algorithm, we maintain two intermediate index
structures (EntIdx and ObsIdx) to keep track of the distinct entity and observation instances. ObsIdx is
the index structure maintained for the observation instances whose types are specified with distinct yes.
This index maintains the mapping from observation type and key values to its corresponding observation
instance id. Obviously, only when an observation type is specified with distinct yes, (i.e., we want to keep
track of the same observation instances) we need to maintain their instances in this index.

The key values can be calculated in three different cases. In the first case where only one measurement of
an observation type is specified with “key yes”, the key value is the value of this “key” measurement. In the
second case, several measurement types are marked with “key yes”, the key value is the combined instance
value of these several measurement types. In the third case, some context of this object type is marked with
“identifying yes”, the key value is the combination of the instance values of its own key measurement types
and the instance values of its context observation’s key measurements.

Entidx is the index structure for tracking the distinct entities. In case that some measurement type(s)
of an observation type is/are specified with “key yes”, if different observation instances have the same value
on these key measurements, semantically, we interpret that they are of the same entity. The key value for
each entity instance is computed in the same way as that for an observation instance.

The procedure of this algorithm is very straightforward. It processes the dataset in a row-wise manner.
In dealing with each row, five steps are involved. The first step generates orphan measurement instances
which are not connected to any observation instances. The second step groups these measurement instances
according to their observation types. Then, for different observation types, the third and fourth steps
materialize entity instances and observation instances respectively by either creating new oned or return
existing ones. The last step assigns the context relationship among the different observation instances.
Analysis of MaterializeDB.
Time: As can be seen that this algorihm scans the original data file in a row-by-row manner without
revisiting the already seen rows. So, it is linear in the size of the dataset. In addition, we use EntIdx and
ObsIdx to facilitate the checking of unique entity and observation instances. Let m be the number of distinct
keys, each checking could take O(log(m)) time. So, in total, the algorithm runs in O(n log(m)) where m ≪ n

generally.
Space: EntIdx and ObsIdx are the intermdedite structures that we use in the algorithm. Since they keep
the distinct entity and observation key values. The space complexity is of O(m).

3



Algorithm 1 MaterializeDB (Dataset, A.∗)

/* Dataset: [Input] in the form of a flat file */
/* A : [Input] Annotations*/

ObsIdx = ∅; /* Keep index 〈ObsTypeId,KeyV al〉 → ObsId*/
EntIdx = ∅; /* Keep index 〈ObsTypeId,KeyV al〉 → EntId*/

for (each Row〈A1, A2, · · · , An〉 ∈ Dataset) do
/* Step 1: Define measurement instances */
MeasSet = CrtMeasurement(Row,A.∗);

/* Step 2: Partition the measurement instances according to observation types*/
ObsType2MeasIdx = PartMeas(MeasSet,A.∗); /*ObsType2MeasIdx = {ObsTypeId → {mi}}*/

ContextIdx = ∅; /* Keep index ObsTypeId → ObsId to materialize context*/
for (each ObsTypeId in ObsType2MeasIdx) do

/* Step 3: Find or create the entity instance for each observation type partition */
EntId = MaterializeEntity(ObsTypeId,ObsType2MeasIdx,EntIdx,A.∗, OBOE.∗);

/* Step 4: Find or create the observation instance for each observation type partition of entity EntId */
MaterializeObs(ObsTypeId, EntId,ObsType2MeasIdx,ObsIdx,ContextIdx,A.∗, OBOE.∗);

end for

/* Step 5: Assign the context observation instances */
MaterializeContext(ContextIdx,A.∗, OBOE.∗);

end for

return OBOE;

Algorithm 2 CrtMeasurement (Row,A.∗)

/* Create new orphan measurement instances */
MeasSet = ∅; /* Keep the set of new measurement instances */
for (each m = 〈MeasTypeId,ResAttribute, Cond, V al〉 ∈ A.Map) do

if((m.ResAttribute! = Row.Ai.Attrname) OR (Row.Ai does not satisfy m.Cond)) continue;
miid = GetNewMeasId(OBOE.Measurement);
if (m.V al! = NULL) MeasV al = m.V al;
else MeasV al = Row.Ai.V al;
Create a measurement instance 〈miid, null,MeasType,MeasV al〉 and add it to MeasSet;

end for

return MeasSet;

Example 3.1 (Example with “key yes” and “distinct yes”, without “identifying yes”) Take the

Algorithm 3 PartMeas (MeasSet, A.∗)

/* Partition measurement instances according to their observation types*/
ObsType2MeasIdx = ∅ /* Keep index for ObsTypeId → {mi} */
for (each mi ∈ MeasSet) do

ObsTypeId = GetObsTypeId (A.MeasType,mi.MeasTypeId);
Update ObsType2MeasIdx by changing the item ObsTypeId → {mi};

end for

return ObsType2MeasIdx;

4



Algorithm 4 MaterializeEntity(ObsTypeId,ObsType2MeasIdx,EntIdx,A.∗, OBOE.∗)

KeyV al = GetObsTypeKeys (ObsTypeId,ObsType2MeasIdx);
HasKey = false;
if (ObsTypeId has key measurements OR is specified with distinct yes) HasKey = true;
EntType = GetObsEntityType (A.ObservationType,ObsTypeId);
CrtNewEntInst = true;
if (HasKey==true) then

EntId = GetEntId(ObsTypeId,KeyV al, EntIdx);
if (EntId! = NULL) CrtNewEntInst = false;

end if

if (CrtNewEntInst == true) then
EntId = CrtEntId(EntType);
Create an entity instance ei = 〈EntId,EntType〉 and put ei to OBOE.Entity;
if (HasKey==true) EntIdx = EntIdx ∪ {〈ObsTypeId,KeyV al〉 → EntId};

end if

return EntId;

Algorithm 5MaterializeObs(ObsTypeId,EntId,ObsType2MeasIdx,ObsIdx,ContextIdx,A.∗, OBOE.∗)

KeyV al = GetObsTypeKeys (ObsTypeId,ObsType2MeasIdx);
IsObsDistinct = CheckIfObsDistinct(A.ObservationType,ObsTypeId);
CrtNewObsInst = true;
if (IsObsDistinct==true) then

ObsId = GetObsId(ObsTypeId,KeyV al, ObsIdx);
if(ObsId! = NULL) CrtNewObsInst = false;

end if

if (CrtNewObsInst == true) then
Create an observation instance oi = 〈ObsId,EntId〉 and put oi to OBOE.Observation;
if (IsObsDistinct==true) ObsIdx = ObsIdx ∪ {〈ObsTypeId,KeyV al〉 → ObsId};

end if

/* Maintain the measurement instances for this observation instance */
miSet = GetMeasInst(ObsType2MeasIdx,ObsTypeId);
if (ObsId is a new one) then

Set the obsId to each mi ∈ miSet so that mi-s are not orphans;
Put all the mi ∈ miSet to OBOE.Measurement;

else

Discard all the mi ∈ miSet;
end if

ContextIdx = ContextIdx ∪ {ObsTypeId → ObsId}; /* ContextIdx is also output*/

data in Table 2 1 as an example to explain the algorithm.
For Row(2007, 1, piru, 35.8)

• Step 1 creates four measurement instances: 〈mi1, null, Y ear, 2007〉, 〈mi2, null,DBH, 35.8〉,

1The detailed annotation is in page 6 of Shawn’s powerpoint file.

yr spec spp dbh
2007 1 piru 35.8
2008 1 piru 36.2
2008 2 abba 33.2

Table 2: Dataset 1

5



Algorithm 6 MaterializeContext(ContextIdx,A.∗, OBOE.∗)

for (ObsTypeId → ObsId ∈ ContextIdx) do
ContextObsTypeId,Rel = GetContextObsTypeRel(A.ContextType,ObsTypeId);
if (ContextObsTypeId! = NULL) then

ContextObsId = GetContextObsId(ContextIdx, ContextObsTypeId);
Create a context instance ci = 〈ObsId, ContextObsId,Rel〉;
Put ci to OBOE.Context;

end if

end for

〈mi3, null, TaxonomicTypeName, P icea rubens〉, 〈mi4, null, EntityName, 1〉,
and returns MeasSet = {mi1,mi2,mi3,mi4};

2.

• Step 2 returns ObsType2MeasIdx = {{o1 → {mi1}, o2 → {mi2,mi3,mi4}}.

• Step 3-4: for observation types o1 and o2, materialize entity and observation instance

– for o1 (with associated instance mi1 of type m1)

∗ Since m1 is specified as key, get the KeyV al = 2007;

∗ No entity with this key exists in EntIdx, create an entity 〈ei1, T emporalRange〉; Now,
EntIdx = {〈o1, 2007〉 → ei1}.

∗ Since o1 is specified as distinct, need to make sure we do not create redundant observation in-
stances. No entry with the key 〈o1, 2007〉 exists in ObsIdx, so, create an observation instance
oi1, which is of entity ei1 and represented as 〈oi1, ei1〉.
Now, ObsIdx = {〈o1, 2007〉 → oi1}

∗ Connect mi1 to oi1;

– When deal with o2,

∗ KeyV al = 1.

∗ Create an entity instance 〈ei2, T ree〉; EntIdx = {〈o1, 2007〉 → ei1, 〈o2, 1〉 → ei2}.

∗ Create an observation instance 〈oi2, ei2〉. No need to update ObsIdx because o2 is not iden-
tified as distinct.

∗ Connect mi2, mi3 and mi4 to oi2;

• Step 5 assigns the context relationship between oi1 and oi2;

For Row (2008, 1, piru, 36.2)

• Step 1 creates measurement instances 〈mi5, null, Y ear, 2008〉, 〈mi6, null,DBH, 36.2〉,
〈mi7, null, TaxonomicTypeName, P icea rubens〉, 〈mi8, null, EntityName, 1〉
and returns MeasSet = {mi5,mi6,mi7,mi8};

• Step 2 gets ObsType2MeasIdx = {{o1 → {mi5}, o2 → {mi6,mi7,mi8}}

• Step 3-4: for observation types o1 and o2 materialize entity and observation instance

– for o1

∗ KeyV al = 2008;

∗ Create an entity instance 〈ei3, T emporalRange〉;
EntIdx = {〈o1, 2007〉 → ei1, 〈o2, 1〉 → ei2, 〈o1, 2008〉 → ei3}.

2For all the instances, the measurement characteristic is set to represent Measurement Type

6



∗ Create an observation instance 〈oi3, ei3〉;
ObsIdx = {〈o1, 2007〉 → oi1, 〈o2, 1〉 → oi2, 〈o1, 2008〉 → oi3}

∗ Connect mi5 to oi3;

– When deal with o2,

∗ KeyV al = 1.

∗ item 〈o2, 1〉 → ei2 is already in EntIdx, so get the entity id ei2. No need to create
an entity.

∗ Since o2 is not specified with distinct yet, we NEED to create an observation 〈oi4, ei2〉. No
need to update ObsIdx.

∗ Connect mi6,mi7,mi8 to oi4;

For ROW (2008, 2, abba, 33.2)

• For o1’s measurement 2008,

– Since 〈o1, 2008〉 → ei3 already exists in EntIdx, no need to create a new entity.

– Since o1 is specified with distinct yes, and 〈o1, 2008〉 → oi3 already exists in ObsIdx, no need
to create a new OBSERVATION and no need to put the measurement instance for 2008 into
OBOE model.

plt spp dbh
A piru 35.8
A piru 36.2
B piru 33.2

Table 3: Dataset 2

Example 3.2 (Example with identifying) Let us use the data in Table 3 as an example. 3 Before we
go through the algorithm step by step, we first note that o1 and o2 have key measurements m1 and m2

respectively. So, we need to maintain the distinct entity instances for both of these two observation types. In
addition, o1 is specified with distinct yes while o2 is not. So, we need to maintain the distinct observation
instances for o1 but not for o2.

For the first row,

• The first step generates three measurement instances MeasSet = {〈mi1, null, EntityName,A〉,
〈mi2, null, TaxonomicTypeName, P icea rubens〉, 〈mi3, null,DBH, 35.8〉}.

• The second step gets ObsType2MeasIdx = {{o1 → {mi1}, o2 → {mi2,mi3}}.

• For each observation type, create entity and observation instances.

– For o1, the key value is A. Since there is no such a key in EntIdx, we create an entity ei1 of type
Plot.
EntIdx = {〈o1, A〉 → ei1}.
We create an observation instance oi1 whose entity is ei1.
ObsIdx = {〈o1, A〉 → oi1}.
Connect the measurement instance mi1 to observation instances oi1,

3The detailed annotation information is at page 8 in Shawn’s powerpoint file.

7



– For o2, the key value is (A,P icea rubens) since it has context o1 with “identifying yes”.
We create an entity instance ei2 of type Tree.
EntIdx = {〈o1, A〉 → ei1, 〈o2, (A,P icea rubens)〉 → ei2}.
We create an observation instance oi2 whose entity is ei2.
Connect the measurement instances mi2 and mi3 to observation instance oi2.

• The last step for this row is to connect the observations using context relationship. For this instance,
we connect oi1 to oi2 with context “Within”.

For the second row,

• The first step defines three measurement instances MeasSet = {〈mi4, null, EntityName,A〉,
〈mi5, null, TaxonomicTypeName, P icea rubens〉, 〈mi6, null,DBH, 36.2〉}.

• The second step gets ObsType2MeasIdx = {{o1 → {mi4}, o2 → {mi5,mi6}}.

• For each observation type, create entity and observation instances.

– For o1, the key value is 〈o1, A〉, EntIdx already has an item for it with entity instance ei1. No
need to create a new instance for it.
To create observation instance, since o1 is specified with “distinct yes” and the key value is 〈o1, A〉,
which corresponds to an existing observatin instance oi1. So, we do not need to create a new
observation for it.
When we try to connect the measurement instance mi4 to observation instance, we realize that we
did not create a new observation instance for type o1. So its related measurement instance mi4
can be discarded.

– For o2, the new key value is 〈o2, (A,P icea rubens)〉 , which corresponds to ei2 in EntIdx, so no
need to create a new instance for it either.
To create observation instances, since no “distinct yes” is specified, we create a new observation
instance oi3 for it. Then, we connct the measurement instances {m5,m6} to observation instance
oi3.

When we process the third row, we have a new key value 〈o1, B〉 for o1, thus we create a new entity
instance for it. For o2, we have new key value 〈o2, (B, P icea rubens)〉 and create a new entity instance for
it. Similarly, we need to create new observation instances for both type.

8


